Geometría del Espacio (G1-G2)

De Casiopea
Clave(es)MAT 1128
Créditos4
Profesor(es)Por definir
Del ProgramaArquitectura, Diseño
Ciclo FormativoCiclo del Oficio
Área de EstudioÁrea Científica, Línea Matemática
CurrículumDecretos Académicos 35 y 37/2017
HomologadaFundamentos de Matemáticas 1Fundamentos de Matemáticas 2
Régimensemestral
Período Académicoprimero
Tipo de AsignaturaObligatoria
Horas3 Teóricas + 3 Taller + 2 Trabajo

Descripción

La asignatura de Geometría del Plano y del Espacio, provee al estudiante de un marco referencial sobre el lenguaje propio de la matemática que le permitirá acceder a diferentes áreas de las matemáticas, en particular a la de geometría. Se presentan situaciones geométricas, en donde mediante su visualización los estudiantes exploran y analizan propiedades de la geometría a través de elementos teóricos, con el apoyo de software de geometría dinámica.

Contenidos

  1. Lenguaje matemático: Proposiciones, axiomas, teoremas y corolarios. Métodos de demostración, directo o indirecto
  2. Geometría Analítica: Sistemas de coordenadas en dimensiones 2 o 3. Rectas y distancia en el plano. Secciones cónicas centradas
  3. Geometría vectorial en el plano y en el espacio: Algebra vectorial. Producto interior y producto vectorial de vectores. Rectas, planos,superficies (ecuaciones). Superficies de revolución y cuádricas. Coordenadas esféricas y cilíndricas
  4. Cambios de coordenadas: Coordenadas paramétricas. Coordenadas polares, gráficas en coordenadas polares y paramétricas. Rotaciones y traslaciones. Estudio de ecuaciones cuadráticas planas

Estrategias de Enseñanza

  1. El docente presenta los elementos de base del marco referencial, definiciones, axiomas, teoremas, propiedades y consecuencias
  2. Los estudiantes son familiarizados con el uso de software
  3. Los estudiantes, en grupos aleatorios, desarrollan talleres, estableciendo conjeturas que les permiten explicar las situaciones estudiadas
  4. En una actividad de encuentro, los estudiantes señalan hallazgos y conjeturas de la exploración
  5. El docente formaliza, a través de una presentación más rigurosa del conocimiento matemático, lo formulado por los diferentes grupos
  6. Los estudiantes en grupos aleatorios, ejercitan desarrollando desafíos para aplicar o profundizar los contenidos

Criterios de Evaluación

  1. Se exige una asistencia mínima de 75% a las clases
  2. Se evalúa la capacidad de ejecutar las tareas y entregarlas cuando es debido
  3. Se corrige y orienta hacia el lenguaje de la disciplina, en las tareas como en los momentos en que se desarrollan los talleres
  4. Se califican cuatro talleres desarrollados en grupos, en donde se consideran áspectos formales de la matemática y evaluaciones de auto y coevaluación para medir su desempeño
  5. Se califican tres pruebas, de carácter individual, donde se evalúa el nivel de comprensión de los temas abordados
  6. Se considera que el estudiante aprueba la asignatura cuando la nota de presentación a examen, NP, es mayor o igual a 4,5, donde NP corresponde al 40% de las notas de Talleres y al 60% de las notas de las pruebas
  7. Se considera que el estudiante reprueba la asignatura, cuando NP es menor que 3,5, de lo contrario, da examen cuya nota corresponde al 33% de la nota final y el 67% de NP

Estructura de Competencias

Una vez completada la asignatura, el alumno tendrá las siguientes competencias:

Competencias
Fundamentales
  • Comunica resultados en lenguaje natural y matemático, haciendo uso de la tecnología disponible
  • Desarrolla trabajo en equipo
Competencias
Disciplinares
  • Reconoce y comprende el lenguaje y las propiedades de la lógica y de los conjuntos
  • Comprende la relación entre números reales, conjuntos y geometría en el plano y en el espacio
  • Describe e identifica lugares geométricos en el plano y en el espacio
  • Distingue y describe los cambios de coordenadas en la geometría del plano y del espacio
  • Enuncia proposiciones, construye demostraciones para transmitir los conocimientos matemáticos adquiridos
  • Conoce demostraciones de propiedades fundamentales en el ámbito de la geometría del plano o del espacio
  • Resuelve problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos
  • Propone, analiza, valida e interpreta modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan

Bibliografía

(Ingresada en formulario)

  1. George Thomas. 2006. Cálculo en una variable. Ed. Pearson Educación. Undécima edición
  2. Ron Larson, Robert P. Hoestetler y Bruce H. Edwards. 2006. Cálculo con Geometría Analítica. Volumen 1. Ed. McGraw Hill. Octava edición
  3. Stein, S., Barcellos, A. Cálculo y Geometría Analítica, Editorial McGraw-Hill 1997
  4. Swokowski, E. 2006. “Álgebra y Trigonometría con Geometría Analítica”. Ed. Thomson. Undécima edición

(Ingresada en Casiopea, referida a esta asignatura)