Bárbara Valdivia espiral

De Casiopea




TítuloEspiral
Tipo de ProyectoProyecto de Taller
Palabras Clavetarea 11
Del CursoImagen Escrita 2012
CarrerasArquitectura
Alumno(s)Bárbara Valdivia
ProfesorHerbert Spencer
/* Espiral aureo */
float phi = (sqrt(4)+1)/2;

void setup() {

size(300, 300);
background(255);
noFill();
smooth();
strokeCap(SQUARE);
strokeWeight(0.001);
stroke(#0FAFF7);
}
void draw() {

translate(height/phi, 0);
scale(height);

for (float i=0; i < 30; i=i+3) {

arc(0, 0, 2, 2.2, 0, PI/2); 
scale(1/phi);
rotate(PI/2);
translate(1/phi, 0);
}
}
*****************************************************************************************

/* Versión espiral internet */


// large version
// second attempt at a fibonacci spiral
// first attempt was great, but used rotation,
// which is expensive and imprecise
// here's the beginning of the fibonacci sequence...
// 0, 1, 1, 2, 3, 5, 8

void setup() {
size(611, 378);
smooth();
frameRate(30);
}
int[] s = new int[3];
int tmp, phase;
float speed;
void draw() {
// clear the screen to a nice green
background(228, 236, 215);
// initialize variables
s[0] = 0;
s[1] = 0; // first number of the fibonacci sequence
s[2] = 1; // second number of the fibonacci sequence
phase = 0; // simple counter; use this to apply fx to the boxes linearly
speed = 0.01; // speed of the effects

// set the origin at the end of the spiral
translate(442, 272);
// flip vertically to match my logo
scale(1.0, -1.0);
rotate(PI);
// this loop constructs the spiral
// basically, draw a square of side s,
// rotate 90deg, calculate the new s0 and s,
// move up s0 + s, and repeat...
while (s[2] < 611) {
// use a sin function to give us some nice undulating effects
float wave = sin((frameCount + phase*20) * speed) + 1.0;
// styles for the arcs
fill(0, 0, wave * 64, 10); // undulating transparent black fill
stroke(255, wave * 255); // undulating white stroke

// draw the quarter-circles inside the squares
// set the stroke weight to 3 for the arc that makes the spiral
if (phase % 4 == 0) strokeWeight(3); else strokeWeight(1);
arc(s[2], s[2], 2*s[2], 2*s[2], PI, 3*PI/2.0);
if (phase % 4 == 1) strokeWeight(3); else strokeWeight(1);
arc(0, s[2], 2*s[2], 2*s[2], -PI/2.0, 0);
if (phase % 4 == 2) strokeWeight(3); else strokeWeight(1);
arc(0, 0, 2*s[2], 2*s[2], 0, PI/2.0);
if (phase % 4 == 3) strokeWeight(3); else strokeWeight(1);
arc(s[2], 0, 2*s[2], 2*s[2], PI/2.0, PI);
// styles for the squares
noFill();
stroke(255, 255, 255, 255);
strokeWeight(1);
// draw the square
rect(0, 0, s[2], s[2]);
// calculate the next number in the fibonacci sequence
tmp = s[2];
s[2] += s[1];
s[0] = s[1];
s[1] = tmp;
// translate to get in position for the next square
switch(phase % 4) {
case 0:
translate(s[1], 0);
break;
case 1:
translate(-s[0], s[1]);
break;
case 2:
translate(-s[2], -s[0]);
break;
case 3:
translate(0, -s[2]);
break;
}
phase++;
}
}